Greater Heretaunga and Ahuriri Land and Water Management Collaborative Stakeholder (TANK) Group

Karakia

Karakia

Ko te tumanako

Kia pai tenei rā

Kia tutuki i ngā wawata

Kia tau te rangimarie

I runga i a tatou katoa

Mauriora kia tatou katoa

Āmine

Water is a taonga and the purpose of our meeting is to.....

Agenda

9:30am

9:45am Presentation overview (Mary-Anne)

9.50am Values and context

Notices

10.30am Native birds and habitat needs (Matt Brady)

10.45am Aquatic habitat and flows (Thomas)

11.00am Considerations for flow setting (Joe Hay)

11.45am Habitat requirements (Thomas)

12:30pm LUNCH

- 1.00pm Modelling; context and results (Jeff and Rob)
- 2.30pm Decisions on low flow/allocation regimes for further analysis
- **3:00pm COFFEE BREAK**

4:00pm CLOSE MEETING

Meeting objectives

For the Ngaruroro and Tutaekuri Rivers:

- 1. Agree relevant values for water quantity management
- 2. Understand the effects of surface water takes on water quantity attributes.
- 3. Agree on allocation and minimum flow/trigger flow options for further assessment
- 4. Agree on abstraction restriction options for further assessment

Engagement etiquette

- Be an active and respectful participant / listener
- Share air time have your say and allow others to have theirs
- One conversation at a time
- Ensure your important points are captured
- Please let us know if you need to leave the meeting early

Ground rules for observers

- RPC members are active observers by right (as per ToR)
- Pre-approval for other observers to attend should be sought from Robyn Wynne-Lewis (prior to the day of the meeting)
- TANK members are responsible for introducing observers and should remain together at break out sessions
- Observer's speaking rights are at the discretion of the facilitator and the observer should defer to the TANK member whenever possible.

Presentation overview

- 1. Overall context; managing water flows and sw abstraction
 - The NPSFM and
 - Community values for water quantity and their attributes
 - Management options limits, reductions, water storage
- 2. The river instream values
 - Native birds (Matt Brady)
 - Aquatic habitat for fish (Thomas Wilding)
- 3. Considerations for setting flow and allocation limits (Joe Hay)
- 4. Updating the flow information (Thomas W)
- 5. Low flow management regime (Jeff and Rob)
 - Choosing management scenarios for further analysis (economic/social/cultural)
 - Choosing restriction regimes for further analysis
 - Modelling augmentation options

Managing effects of abstraction on water flows

What these decisions mean for the river values

Water Quantity Management; NPSFM

- **1.** Recognise Te Mana o te Wai
- 2. To safeguard the life-supporting capacity, ecosystem processes and indigenous species including their associated ecosystems of fresh water, in sustainably managing the taking, using, damming, or diverting of fresh water
 - And protect the significant values of outstanding water bodies
- **3.** Set environmental flows and/or levels
 - Include how much is available for abstraction (limit) and include a minimum flow
- 4. Avoid (or phase out) over-allocation
 - Over-allocation is where freshwater objectives not being met
 - This can be in terms of the river values as well as abstractive values
- 5. Provide for economic well-being within the sustainable limits

Allocate water efficiently

Sustainable water yield

How big is the pie?

• How much above defined flows can be abstracted?

The bigger the pie;

→the more the impact
on flow regimes
→the sooner the flow
restriction

Water allocation

How big is my slice? Do we all get the same size? The bigger the slice; → the fewer people get access

→ are there priority end uses?

Water augmentation

Taking at higher flows Storing for later use Reticulating Saving/conserving/ rostering

How can we get more pie?

Value sets for water

ECOSYSTEM HEALTH

TANGATA WHENUA

Natural character, biodiversity, native fish, plants and birds, contribution to groundwater Mauri, Wai tapu, Te Hauora o te Wai, o te Tangata, o te Taiao, taonga, whakapapa, kaitiakitanga, wahi tapu...

HUMAN HEALTH

Household water supply, urban water supply, mahinga kai

Swimming, boating, fishing, mahinga kai, natural character, tourism

RECREATION, SOCIAL

Abstraction for irrigation and food production/processing, tourism, employment, stock water

ECONOMIC

Flood carrying capacity, river stability, gravel

> FLOOD CONTROL /STABILITY

Values we hold for the Rivers

- Some **quantitative** detail about various values is available
 - E.g fish and fishing, swimming (Rivas assessments, angling surveys, native fishery, birds)
- **Qualitative** information about others (*i.e cultural values in Ngā Ngaru* o Ngā Upokororo, Tutaekuri River)
- Information also provided about
 - Value of primary production to local and regional economy
 - Conservation Order application data new evidence being collated for these values
- Further information to understand impacts of water management regimes on economic /cultural/social 'value' of water abstraction – yet
- Interim report agreement to assess effects of policy options on all values

The TANK group will need to decide on minimum flows, allocations and a flow management regime that provides for these agreed values at the agreed levels of protection

From the RMA;

ENVIRONMENT includes—

- a) ecosystems and their constituent parts, including people and communities; and
- b) all natural and physical resources; and
- c) amenity values; and
- d) the social, economic, aesthetic, and cultural conditions which affect the matters stated in paragraphs (a) to (c) or which are affected by those matters

Significance of Values Other processes

NPS FM – Protect the **significant values** of outstanding freshwater bodies

- RPS commitment
- Plan change process underway to identify outstanding freshwater bodies

WCO – some values may be **outstanding**. Other regulatory tools to manage them may be appropriate.

Significance of values

Attributes for water quantity (measurable characteristics of freshwater)

Attributes for values

TANGATA WHENUA

Attribute groups for different values

Attribute groups for different values

TANGATA WHENUA

The NPSFM already requires us to recognise Te Mana o te Wai and manage flows to safeguard the life supporting capacity and ecosystem processes.

There are no rules or thresholds to help decide what that means. The management flow choice may be influenced by deciding one value is more important than another.

- 1. Does the TANK Group wish to assign significance to the values for which it is to make decisions about flow/quantity?
- 2. Does the TANK Group continue to agree these values are equally important in deciding water allocation and minimum flows?

Values matrix – Ngaruroro River

VALUES	Εςονομιά	2	ECOSYSTEI	м Неаlтн Attribu	utes	SOCIAL RECREATION MAHINGA KAI	Spiritual Cultural	Other	
scenario	Reliability	Allocation limit	Habitat protection (%)	Days below minimum flow	% MALF				
1									
2									
3									
4									

The economic costs may be calculated;

- by impacts of changes in reliability of supply or
- costs of augmentation to improve reliability of supply.

Values matrix – Ngaruroro River

VALUES	Εςονομιά	2	ECOSYSTE	M HEALTH	utes	SOCIAL RECREATION MAHINGA KAI	Spiritual Cultural	Other
scenario	Reliability	Allocation limit	Habitat protection (%)	Days below minimum flow	% MALF			
1								
2								
3								
4								

The economic costs may be calculated by impacts of changes in reliability of supply or costs of augmentation to improve reliability of supply.

Attributes for Ecosystem Protection

 Habitat protection
80 -100% habitat protection for torrent fish expected to minimise the risk of torrent fish populations falling below natural levels.
Also provides very high level of protection for other native fish
60-80% habitat protection for torrent fish expected to reduce (relative to the status quo) the risk of torrent fish populations falling below natural levels.
Also provides higher level of protection for other native fish (habitat protection level for smelt >90%)
<60% habitat protection for torrent fish expected to continue current risk that torrent fish population are below natural levels.
Provides higher level of protection for other native fish (habitat protection level for smelt >90%)
 44% habitat level of protection for torrent fish, 86% level of protection for smelt.
Flows remaining below 2400 L/s for extended periods increase the risk of measurable effects on the torrent fish population, especially if fish densities are high going into summer.
densities are high going into summer.

Attributes for reliability of supply

10 0	consecutive	<u><</u> 5% days	1x times 3	Protects investment into
day	S	on no	consecutive days	irrigated land use
rest	riction no	restriction	restriction less	activities at a high level
mor	e than		than 12 times in	of security
1/11	7 years		17 years	
RP	>10			
10 0	consecutive	>5 % <10%	2-3 times 3	Protects investment into
day	S	days on no	consecutive days	most existing irrigated
rest	riction no	restrictions	restriction	land uses. In some
mor	e than		between 4 and 6	years there may be
onc	e in 10		times in 10 years	insufficient water for
yea	ſS			sensitive crops
				-
RP	5-10			
10 (consecutive	More than	4 or more times 3	Some irrigated land uses
day	S	10% days on	consecutive days	not economically viable
rest	riction 2 or	no restriction	restriction more	at this level of
moi	e times		than 6 times in 10	security. Land use
with	nin a 10		years	change likely to occur
yea	r period			
	<5			

Assessing costs of water storage options to meet proposed minimum flows

	Protects investment
	into irrigated land use
	activities at a high
	level of security for
	least cost
	Protects investment
	into most existing
	irrigated land uses. In
	some years there may
	be insufficient water
	for sensitive crops
	Some irrigated land
	uses not economically
	viable at this level
	water augmentation
	and costs. Land use
	change likely to occur

Restriction regimes and effects on flows

1. Previous decisions

- Cease take not favoured
- Develop a more responsive, managed approach

2. Options for restriction regimes;

- a. user groups to meet minimum flow by voluntary rostering etc
- b. staged reductions cease take
- c. staged reductions no cease take
- d. flow sharing
- e. cease take at minimum flow
- 3. Restriction regimes and minimum flows impact on;
 - Abstraction (reliability)
 - River attributes (days where flow reduced below specified minimums)
 - Cost of water augmentation to improve security of supply/mitigate effects of abstraction

High flow abstraction triggers

- 1. High flow allocations have impact on river flows, form and functions
- 2. There is a range of existing flow allocation triggers for both rivers
- 3. Recommendation already made for rationalising number of flow control sites where possible.
- 4. High flow allocation regime (policies, limits and flows) for;
 - Mitigating effects of abstraction (gw and sw) on flows
 - Mitigating low reliability of supply for sw takes
 - Providing for new uses
 - options still under development by WAG

Native Birds

Matt Brady; Department of Conservation

Birds on the Ngaruroro

Black-billed gull (Larus bulleri)

Birds on the Ngaruroro

Black-billed gull (Larus bulleri)

From 83 Species of Birds utilize the Ngaruroro Rivers estuary tributaries, wetlands

67 found at estuary61 Wetlands58 Riverbeds

However I would consider 52 as water birds

Above the cableway there is an extra species which is a river specialist the Whio

16 species are considered threatened. Of those only 1 the New Zealand Falcon isn't associated with Rivers and estuaries

North Island Brown Kiwi are at risk-declining

South Island Pied Oystercatcher

Haematopus finschi

One of the few known north Island Breeding sites

3180km of Waterways

Braided River Birds

Of the 52 water species about 15 species that would commonly utilize the braided rivers

This includes two of the threated species that DOC are particularly interested in

Black-billed Gulls - Nationally Critical (70% decline in 30 years)

Banded Dotterel – Nationally Vulnerable, Ngaruroro may hold as much as 2% of the National population (Stephenson 2010)

Breeding August till January BBG Nesting braided river gravel beds

Feeding primarily on invertebrates taken from rivers and adjacent pasture, BBGs small fish (whitebait)

Banded Dotterel (Charadrius bicinctus)

Needs

River edge, Ample food supply Islands No Weeds No Disturbance Predator free

On Flow regimes

Currently our understanding of the relationship between braided rivers and avifauna is not sufficient to accurately assess effects of altered flow regimes or to prescribe optimal flow but to hypothesize potential effects.

	PREDICTION	POTENTIAL EFFECTS	POTENTIAL CONSEQUENCES
	1. Lower flows	 Lower food availability 	Greater competition for food
		 Increased weed encroachment 	 Less breeding and feeding habitat
		Less food-producing habitat	 Increased cover for mammalian predators and their prey
		Increased access to islands by mammalian predators	Lower productivity and survival
	2. Fewer channels (braids)	Reduced area of feeding habitat	 Fewer habitat choices – greater competition for food
目の目		 Increased access to islands by mammalian predators 	Less-optimal breeding habitat
			 Lower productivity and survival
	3. Fewer islands	 Fewer islands safe from predators 	 Lower productivity and survival
N	4. Increased channel stability	 Reduced accessibility to preferred foods 	Less breeding and feeding habitat
-		 Increased weed encroachment 	 Increased cover for mammalian predators

O'Donnell 2016

However the present lack of quantifiable data and information on flow regimes requirements for avifauna is an impediment for setting limits for regional plans Sources indicate that reduced flow regimes have detrimental effects

Glova Showed 1985 that slow is positively correlated with food producing habitat

And O'Donnell 2011 Shows declines in black-fronted tern numbers is highest on rivers that had much reduced flow

Flows and threatening processes

Predators

Mustela furo

Whio (Hymenolaimus malacorhynchos) Nationally Vulnerable (1000-5000individuals)

Whio are now sporadically distributed in forested headwaters along the main rangers of both Islands.

We estimate around 50-60 inhabit the Ngaruroro Catchment.

Habitat needs - high water clarity and quality, coarse substrate, narrow width pool and riffles with forested margin. (gradient 50-80m per km)

Diet is almost exclusively freshwater invertebrates but have been know to eat berries on stream margins

Threats habitat loss and Predation

No Guarantee of security in the high country

Total Ngaruroro Catchment above the forest park exit 100771ha

Total in Public conservation Land 35700ha

Total in Private Hands 65071ha

NZFFD records - fish distributions

HC GD 2000 New Zealand Tenswene Necator Not for publication normavigation 1:275,000 HC Topo, & Crown Produced by Johnen on 11/10/2017

Traditional distribution was from mountain tarns to lowland bush edged rivers and lake

All they need is segments of river/streams with a gradient 50-80m per km, a forested margin good water quality and predator control.

Altitude isn't a prerequisite

Whio (Hymenolaimus malacorhynchos)

Blue Ducks don't have an Altimeter

Opportunities Abound

The wetland lakes and margins of the Ngaruroro and its catchment create habitat for many other species including the Nationally Critical Bittern, the relic crake populations, the declining fern bird and the resurgent Dabchick.

Storage and Recharge Lakes correctly designed can create habitat for diving and dabbling species

Te Tua Staion pond

Sediment and Nutrient filtration can be a Constructed Wetland Habitat

Good land management practices such as fencing and riparian planting can lead to habitat for water birds and Forest birds

We need to ensure that the policy mechanism and education is place so as to enable these options. We need to ensure that the education and policy mechanisms are in place so as to enable and incentivize these options.

This is not just down to TANK other instruments are been developed for example HB Regional Biodiversity Strategy and Predator Free 2050

Fish and habitat in the Tutaekuri and Ngaruroro

Thomas Wilding

Background to habitat surveys

- Problems with the old RHYHABSIM survey (Twyford Hearings - irrigation consents)
- Peer review by Cawthron (Joe Hay) recommended improvements, including more cross-sections and better habitat suitability curves for trout
- Joe Hay also helped with study design
- New RHYABSIM surveys completed (2009-2012) to inform TANK plan change

Ngaruroro River

SAFEGUARDING YOUR ENVIRONMENT + KAITIAKI TUKU IHO

March 2011 EMT 10/37 ISSN: 1179 8513 HBRC Plan Number 4249

The river that sustains us

	Habitat Modelled
Shortfin eel	Yes, two size classes
Longfin eel	yes
Common bully	Yes
Upland bully	Yes
Torrentfish	Yes
Redfin bully	Yes
Inanga	Yes
Crans bully	Yes
Common smelt	Yes
Lamprey	Yes
Koaro	Yes
Dwarf galaxias	Yes
Bluegill bully	Yes
Giant bully	No HSC available
Black flounder	No HSC available
Yelloweyed mullet	No HSC available
Grey mullet	No HSC available
Rainbow trout	Yes, two size classes
Brown trout	Yes, two size classes
Koura	yes

Ngaruroro fish

Tutaekuri Survey

RESOURCE MANAGEMENT GROUP

SAFEGUARDING YOUR ENVIRONMENT + KAITIAKI TUKU IHO

Tutaekuri River Instream Flow Assessment

May 2012

	Habitat Modelled
Longfin eel	Yes, two size
	classes
Shortfin eel	Yes, two size
	classes
Common bully	Yes
Torrentfish	Yes
Redfin bully	Yes
Inanga	Yes
Crans bully	Yes
Common smelt	Yes
Koaro	Yes
Bluegill bully	Yes
Giant bully	No HSC available
Black flounder	No HSC available
Yelloweyed mullet	No HSC available
Grey mullet	No HSC available
Rainbow trout	Yes, two size
	classes
Koura	VAS
Roura	yes

Tutaekuri fish

Study design

"habitat modelling ...began with consultation of stakeholders... DOC, Fish and Game... and local Iwi representatives. Scientists from... NIWA and the Cawthron... for technical expertise..."

"upper Tutaekuri survey was initiated to specifically address increasing abstraction pressure in the **upper reaches and tributaries**"

Tutaekuri study reach

Tutaekuri River

Loses 800 L/s to groundwater -> Moteo springs

Summary

- Ngaruroro and Tutaekuri sustain valued fish communities
- New RHYABSIM surveys completed (2009-2012) to inform TANK plan change
- Cawthron (Joe Hay) helped guide and improve those surveys

Considerations for setting flow and allocation limits - TANK

Joe Hay; Cawthron Institute

CONSIDERATIONS FOR SETTING FLOW AND ALLOCATION LIMITS - TANK JOE HAY 18 OCTOBER 2017

FLOW IS A DEFINING FEATURE OF STREAMS

- Flow a "master variable" in streams.
- Influences many aspects of stream ecology, including:
 - Channel form, the habitat template
 - Transport of sediment, nutrients and food down a river system
 - and the distribution and behaviour of organisms.

Flow a "master variable" in streams

- Channel forming floods
 - Large floods to maintain channel form, large scale sediment transport, and control encroachment of woody weeds.
 - ~ mean annual maximum flow,
 - flows > 10 x mean flow or 40% of the mean annual maximum flow begin to move a substantial portion of the bed (Clausen & Plew 2004).

- Flushing flows
 - Smaller floods/freshes to flush fine sediment, periphyton and other aquatic vegetation. Maintain quality of benthic invertebrate habitat.
 - Usually about 3–6 x median flow (or 3–6 x low flow in highly regulated rivers) (Biggs & Close 1989; Clausen & Biggs 1997).

Moawhango River before and after a flushing flow, from Jowett & Biggs (2006)

- Low flows
 - The period of minimum wetted habitat (i.e. minimum living space).
 - The MALF is a convenient low flow statistic for indexing low flows that potential limit trout and native fish populations (Jowett 1990, 1992, Jowett et al. 2008), at least where suitable habitat declines below MALF.

Flow recessions

- Temporary increase in productive habitat following high flow events.
- Able to be utilised by benthic invertebrates, which may help define carrying capacity for fish and bird populations.
- Median flow (or seasonal median) can be viewed as providing an approximation of 'typical' habitat availability during flow recessions to support invertebrate productivity (Jowett 1992).

- Flow variability (at a range of scales)
 - Flow variability an important predictor of fish community structure and trout abundance in NZ rivers (Crow et al. 2013; Jowett 1990; Jowett & Duncan 1990).
 - May also provide an opportunity and stimulus for fish migrations and/or spawning, for example:

Flows in the order of 2-4 times the median or preceding base flow (Snelder et al. 2011).

Whitebait galaxiid species spawn above the baseflow water level during high flow events; larvae hatch and are carried downstream by subsequent high flows (Allibone & Caskey 2000, Charteris et al. 2003, Franklin et al. 2015).

May provide for connectivity (e.g. wetlands, side-braids, ox-bows)

Main influence of run-of-river abstraction

FLOW REQUIREMENTS OF DIFFERENT SPECIES: PHYSICAL HABITAT (SPACE)

Slow water species

Fast water species

FLOW REQUIREMENTS OF DIFFERENT SPECIES: SPACE AND FOOD

- Both space and food are key determinants of fish communities.
- Influence of flow changes different for drift-feeding and benthic foraging fish.

- Food and space requirements and availability can differ with flow, time-ofday, season, temperature, etc.
- Altering space and/or food can have major impacts on fish abundance, the size of fish that can be supported, and fish behaviour.
- However, depends on how close to carrying capacity a given population is...
HABITAT TEMPLATE IN A BRAIDED RIVER

KEY COMPONENTS OF FLOW MANAGEMENT (REQUIRED BY NPS-FM)

DETERMINING ENVIRONMENTAL FLOW NEEDS – WHERE DO WE START?

- 1. Identify instream values
- 2. Define instream management objectives
- 3. Focus on critical values
 - those that have highest value and highest flow needs
 - in larger rivers these are typically salmonids and birds
- 4. Focus on critical flow related environmental requirements (attributes)
 - physical habitat (space)
 - food
 - water quality (temperature, oxygen, etc.)
 - fish passage

SELECTION OF FLOW ASSESSMENT METHODS – RISK MGMT.

 Selection of methods depends on instream values, river size & degree of hydrological alteration (e.g., NES Flows & Water Levels; Beca 2008)

Table III

Methods Used in the Assessment of Environmental Flow Requirements for Degrees

of Hydrologic Alteration and Significance of Instream Values

		Signific	ance of Instream Values	
		Low	Medium	High
		Historic Flow Method	Historic Flow Method	Generalised Habitat Models
	Low	Expert Panel	Expert Panel	1D Hydraulic habitat model
				Connectivity/Fish passage
		Historic Flow Method	Generalised Habitat Models	1D Hydraulic habitat model
		Expert Panel	1D Hydraulic habitat model	2D Hydraulic habitat model
		Generalised Habitat Models	Connectivity/Fish passage	Dissolved Oxygen Model
	E			Temperature Models
c	ledit			Suspended Sediment
ation	Z			Fish bioenergetics model
terc				Groundwater model
c				Seston flux
ogi				Connectivity/Fish passage
drol	High	Generalised Habitat Models	Entrainment Model	Entrainment Model
, Ч		1D Hydraulic habitat model	1D Hydraulic habitat model	1D Hydraulic habitat model
e of		Connectivity/Fish passage	2D Hydraulic habitat model	2D Hydraulic habitat model
gre		Periphyton Biomass Model	Bank stability	Bank stability
De			Dissolved Oxygen Model	Dissolved Oxygen Model
			Temperature Models	Temperature Models
			Suspended Sediment	Suspended Sediment
			Fish bioenergetics model	Fish bioenergetics model
			Inundation modelling	Inundation modelling
			Groundwater model	Groundwater model
			Seston flux	Seston flux
			Connectivity/Fish passage	Connectivity/Fish passage
			Periphyton Biomass Model	Periphyton Biomass Model

 More complex (expensive) methods with increasing value and/or degree of hydrological alteration

TWO MAIN INSTREAM FLOW ASSESSMENT METHODS USED IN NEW ZEALAND

- Historical flow methods
- Habitat methods

HABITAT SUITABILITY CRITERIA FOR DIFFERENT SPECIES

Slow water species

Torrentfish

Fast water species

HABITAT METHODS VS HISTORICAL FLOW METHODS

A NEW TOOL: BIOENERGETICS

Concern that importance of food and feeding not adequately addressed by habitat methods \rightarrow

Process-based modelling of invertebrate drift dispersion, trout drift foraging and net rate of energy intake (NREI)

NREI = Energy Intake – Energy losses & costs Energy losses & costs include:

- excretion
- metabolism
- swimming & foraging costs

Process-based modelling for estimating NREI & trout abundance

Comparison of NREI model vs WUA – Mataura R.

MALF = 17 m³/s Median Q = 46 m³/s

IMPACT OF WATER TEMPERATURE OF ENERGETICS

ASSUMED BIOLOGICAL RESPONSE TO FLOW CHANGE

Flow

NREI RESULTS HIGHLIGHT IMPORTANCE OF ALLOCATION LIMIT IN CONJUNCTION WITH MINIMUM FLOW

- When identifying critical instream values and mgmt. objectives
 Particularly if drift feeding fish, then need to consider maintenance of
 flows to support feeding opportunity, as well as space and food
 supply
- Consider mechanisms to maintain low to median flow range, e.g. reduced allocation limit, increased minimum flow, flow sharing, abstraction stepdown
 - Flows become decreasingly important for drift feeding and benthic invertebrate production the further they exceed the minimum flow

TECHNICAL ASSESSMENT METHODS

• Historical flow methods

Generalised habitat modelling

- Hydraulic habitat modelling
- Water quality modelling
- Coupled drift and bioenergetics
 modelling (NREI)
- ++ others

Non-specific Assume status quo is best Assume linear proportional response to flow Easily applied

Linked with specific values Assume habitat (or WQ or food) limiting Non-linear flow response Data hungry Expensive Controversial

SETTING LIMITS?

HABITAT RETENTION ANALYSIS – RISK MGMT. AGAIN

- Change in habitat from reference flow
 - Relative to MALF for fish, or median flow for invertebrates (based on Jowett 1992; Jowett et al. 2005, Jowett et al. 2008)

- Assumed risk of adverse effects increases with greater deviation from natural flow statistic (or habitat optimum).
- Same retention approach can be applied to flow directly (historical methods) or fish NREI (bioenergetics methods)

MINIMUM FLOW – PROTECTION LEVELS

Risk management continued

<u>Suggested</u> significance ranking (from highest (1) to lowest (5)) of critical values and levels of habitat retention. Table taken from Jowett and Hayes (2004).

Critical value	Fishery quality	Significance ranking	% habitat retention
Large adult trout – perennial fishery	High	1	90
Diadromous galaxiid	High	1	90
Non-diadromous galaxiid	-	2	80
Trout spawning/juvenile rearing	High	3	70
Large adult trout – perennial fishery	Low	3	70
Diadromous galaxiid	Low	3	70
Trout spawning/juvenile rearing	Low	5	60
Redfin/common bully	-	5	60

Were not meant to be hardwired rules!

COMPARISON WITH HISTORICAL METHOD

- Varying retention level approach can be applied with historical methods
- Commonly historical flow methods used to guide broad-scale flow management decisions (e.g. in Regional Plans)
- Historical methods tend to produce more conservative minimum flows for a given retention level, at least where MALF > 460 l/s (e.g. Roygard 2009; Hay 2010)

ALLOCATION LIMITS

- Maintenance of invertebrate production (food for fish) more dependent on allocation limits or flow sharing rules than minimum flow
- Scenarios can be assessed using invertebrate habitat retention relative to median flow, or benthic process models (e.g. BITHABSIM)
- Often based on risk management and security of supply analysis (how many additional days of flow restriction are acceptable, for water users and the environment?)
- Minimum flow and allocation limits require balancing:
 - For a given minimum flow higher allocation increases the frequency and duration of the minimum flow:

Thereby increasing the likelihood of adverse ecological effects (e.g. by reducing benthic invertebrate production (fish food supply) and feeding opportunities for drift-feeding fish)

But also lowers security of supply to abstractors.

A lower minimum flow increases risk of adverse effects for in-stream values so consideration should be given to reducing the allocation rate to offset this risk.

ALLOCATION LIMITS – PROTECTION LEVELS

• Allocation precedents:

н.

- Beca 2008 considered the following as high degree of flow alteration:
 - Abstraction > 40% of MALF, or any flow alteration from impoundments, irrespective of region or source of flow
 - Total abstraction of 20–30% of MALF, depending on instream values and baseflow characteristics
 - > Abstraction that increases duration of low flow to about 30 days or more.
 - ➔ Allocation < 30% of MALF have been viewed as reasonably environmentally conservative in recent years (e.g. Horizons' One Plan)
- Further support now for importance of conservative allocation limits from bioenergetics model results (especially the value of flow sharing or allocation rationing)
- The water immediately above the minimum flow is of most value

ALLOCATION LIMITS AND MINIMUM FLOW – PROTECTION LEVELS

- Additional support for these protection level precedents from proposed a presumptive standard (Richter et al. 2012):
 - Suggest that altering natural flows <10% can be considered environmentally conservative, the natural structure and function will be maintained with minimal changes.
 - Moderate levels of ecological protection will be provided when flow changes are limited to < 20 % (i.e. there may be some measureable changes in structure and minimal changes to ecosystem function).
 - Higher levels of flow alteration will have increasing risk of adverse effects.

PROTECTION LEVELS – RECENT ADVICE TO TDC AND NCC

- Minimum flow and allocation limits based on historical flow method (% of MALF).
- High value then accept minimal risk
 - minimum flow provides 90-100% habitat retention at naturalised MALF
 - allocation limit 10-20% of MALF
- Lower value then accept more risk
 - minimum flow provides 70-80% habitat retention at naturalised MALF
 - allocation limit 20-30% of MALF

COMPARISON WITH EXISTING ALLOCATION AND MINIMUM FLOWS

River	Naturalised MALF (I/s)	Allocation (l/s)	Existing min flow (I/s)	Proposed min flow - HBRC reports 2011, 2012 (I/s)
Ngaruroro	4700	2000	2400	4200
	% MALF	43	51	89
Tutaekuri	3900	350	2000	3200
	% MALF	9	51	82

Note: Values shown are approximate

OTHER CONSIDERATIONS

- Flow statistics 7Day or 1Day
- Naturalising flow statistics
- Cumulative allocation
 Consented and permitted
- Minimum flow equals cease take?
- Restriction trigger and number of steps?
- Security of supply
- Supplementary allocation (high flow harvesting)?
- Scaling limits within catchments

SUMMARY - A COMMON APPROACH

- Historical flow methods to guide broad-scale flow management decisions
- Detailed instream habitat analysis for rivers with high values and/or large flow alteration
- Protection levels based on risk assessment
- Allocation limits balancing security of supply to abstractors and risk to instream life of extending low-flow period

Habitat Requirements

Thomas Wilding

Take home points

Tutaekuri

- Less water use than Ngaruroro
- Even in dry years, there is sufficient flow to maintain a high level of habitat protection for adult trout

Ngaruroro

- Already drops below recommended protection levels for torrentfish
- Increased water use would increase risk of measurable effects on fish populations

Tutaekuri River

Habitat Protection flows - Tutaekuri

Tutaekuri River - Puketapu nat. MALF 3900 L/s <i>(was 3800)</i> exist. MALF 3500 L/s	Flow for 90% habitat	Flow for 80% habitat	Flow for 70% habitat	Habitat protection at 2000 L/s
Fast-water fish	3300 L/s	2800 L/s	2300 L/s	65%
i.e. adult trout	(3200)	(2600)	(2100)	(68%)
Moderate-water fish i.e. koaro	1600 L/s	1100 L/s	700 L/s	100%
Slow-water fish i.e. common bully	<500 L/s	<500 L/s	<500 L/s	100%
Invertebrates (food producing)	2700 L/s	2100 L/s	1600 L/s	79%

At median flow, water use had negligible effect on invertebrate habitat (3.72 to 3.70 m²/m) and trout habitat (2.13 to 2.12 m²/m)

At MALF, water use has reduced trout habitat from 100% to 93% protection level (to 97% for torrentfish, to 97% for invertebrates)

At its worst, water use reduced trout habitat from 94% to 81% protection level (April 2009)

Ngaruroro River

N

Habitat Protection flows - Ngaruroro

Ngaruroro River - downstream of Fernhill nat. MALF 4700 L/s (was 4500) exist. MALF 3800 L/s	Flow for 90% habitat	Flow for 80% habitat	Flow for 70% habitat	Habitat protection at 2400 L/s
Fast-water fish i.e. torrentfish	4400 L/s	4000 L/s	3600 L/s	44%
Moderate-water fish i.e. smelt	2700 L/s	2200 L/s	1800 L/s	86%
Slow-water fish i.e. common bully	1200 L/s	<1000 L/s	<1000 L/s	100%
Invertebrates (food producing)	4200 L/s	3700 L/s	3200 L/s	47%

At median flow, water use had negligible effect on invertebrate habitat (9.856 to 9.857 m²/m) and trout habitat (0.363 to 0.362 m²/m)

At MALF, water use has reduced torrentfish habitat from 100% to 75% protection level (to 91% for trout, to 83% for invertebrates)

At its worst, water use reduced torrentfish habitat from 42% to 16% protection level (March 2013)

Ngaruroro worse if water use increases

Summary

- Ngaruroro
 - Already drops below recommended protection levels for torrentfish
 - Increased water use would increase risk of measurable effects on fish populations
- Tutaekuri
 - Less water use than Ngaruroro
 - Even in dry years, there is sufficient flow to maintain a high level of habitat protection for adult trout

Trigger flow summary

	MALF naturalised	Flow for 90% habitat	Flow for 80% habitat	Flow for 70% habitat	Habitat protection at 2400 L/s
Tutaekuri adult trout	3900 (was 3800)	2700 L/s	2200 L/s	1800 L/s	86%
Ngaruroro torrentfish	4700 (was 4500)	4400 L/s	4000 L/s	3600 L/s	44%

Tutaekuri

 Approximately 17 more days below a given flow, as a result of water use (increments between 3500 and 6000 L/s)

 Approximately 10 more days below a given flow, as a result of water use (increments between 2500 and 10000 L/s)

Modelling results – deciding on scenarios

Managing effects of water abstractions on the Ngaruroro and Tutaekuri Rivers

Issues;

- 1. The River flows are affected by the cumulative impact of groundwater and surface water abstraction
- 2. Reduced flows affect native fish habitats
- 3. Minimum flow restrictions affect
 - Reliability of supply for abstraction
 - Costs of storage mitigation options
- 4. Effects of abstraction on River flows can be managed by;
 - Specifying limits for total abstractions,
 - Staged reductions at specified low flows
 - Storage during high flow and release during drought
 - Improving water quality/aquatic ecosystem health

Options

A range of scenarios for managing flows in the two rivers has been modelled.

The **base case** (or current management regime) will be modelled to understand the current water use impact on the economic, social and cultural wellbeing of the community

Proposals;

- 1) Cap SW allocation to existing use
- 2) That the TANK Group identifies two further management scenarios that combine minimum flows with restriction regimes for further modelling/assessment

Tutaekuri River and Ngaruroro River Reliability of Supply for Irrigation

Rob Waldron

Outline:

- What is *Reliability of Supply*?
- How is it measured?
 - Management scenarios for simulation
- Modelling simulations:
 - i. Tutaekuri River
 - ii. Ngaruroro River
- Summary of results

Reliability of supply for <u>surface water</u> for takes

How much surface water is allocated?

For modelling:

Ngaruroro River: **1,373 L/s** > minimum flow 2,400 L/s

Tutaekuri River: **343 L/s** > minimum flow 2,000 L/s What is Reliability of Supply for irrigation? The capacity of a water resource to meet irrigation needs

- A function of water availability and demand for water
- Adequate supply reliability is essential for productive sector irrigation
- Decreased availability or increased allocation will reduce reliability of supply
- Limit setting is commonly driven by balancing reliability of supply with requirements for instream values

How is Reliability of Supply measured?

10 Original Proposed Scenarios

Original Scenario ID	Tutaekuri and Ngaruroro Minimum Flow	Restriction Regime	Modelled Water Use	Flow Augmentation	GW Abstractions
Scenario 1	Current (Base Case)	Cease take at minimum flow	Maximum Allocation	None	Current stream depleting GW
Scenario 2	Current (Base Case)	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 3	90% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 4	80% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 5	70% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 6	MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 7	90% habitat at MALF	Staged reductions + cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 8	70% habitat at MALF	Staged reductions + cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 9	70% habitat at MALF	Flow sharing + cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 10	No minimum flow	Flow sharing only	Existing Use	None	GW in new Stream Depletion Zone 1

7 Scenarios Modelled

Original Scenario ID	Tutaekuri and Ngaruroro Minimum Flow	Restriction Regime	Modelled Water Use	Flow Augmentation	GW Abstractions
Scenario 1	Current (Base Case)	Cease take at minimum flow	Maximum Allocation	None	Current stream depleting GW
Scenario 2	Current (Base Case)	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 3	90% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 4	80% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 5	70% habitat at MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
Scenario 6	MALF	Cease take at minimum flow	Existing Use	None	GW in new Stream Depletion Zone 1
New Scenario	WCO - Ngaruroro River 4200 I/s (Tutaekuri River at current minimum flow)	Cease take at minimum flow	Existing Use	None	Current stream depleting GW

Scenario ID	2	3		
Scenario Name	Base Case	90% MALF		
	Dase Case	Habitat		
	Estimated	Estimated		
Nodelled Abstraction	Demand	Demand		
Minimum Flow (I/s)	2400	4400		
Total % restriction	2.2%	7.1%		
Average no. days restriction per year	3.3	10.9		
Return period for year with period of >=3 consec. days restriction (Years)	3.4	1.5		
Return period for year with period of >=10 consec. days restriction (Years)	17	2.4		
Example Dry Year - Climate Equivalent to 2012-2013				
No. days restriction	52	73		
No. periods of >=3 consec. days restriction	3	5		
No. periods of >=10 consec. days restriction	2	2		

Scenario ID	2	3		
Scenario Name	Base Case	90% MALF Habitat		
Modelled Abstraction	Estimated Demand	Estimated Demand		
Minimum Flow (I/s)	2000	3300		
Total % restriction	0%	5.9%		
Average no. days restriction per year	0	9.1		
Return period for year with period of >=3 consec. days restriction (Years)	-	2.4		
Return period for year with period of >=10 consec. days restriction (Years)	-	3.4		
Example Dry Year - Climate Equivalent to 2012-2013				
No. days restriction	0	77		
No. periods of >=3 consec. days restriction	0	6		
No. periods of >=10 consec. days restriction	0	3		

Average number of days restriction increases with higher minimum flows

In a dry year, higher minimum flows increase restriction days (up to 26 additional days for a minimum flow set at 4700)

3 or more days of consecutive restriction likely to occur more often with higher minimum flows

10 or more days of consecutive restriction likely to occur more often with higher minimum flows (once every 2.4 years for a minimum flow at 90% of MALF habitat

No restriction with current minimum flow.

In a dry year, higher minimum flows result in restriction days (20 days for a minimum flow set at 70% of MALF habitat)

No restriction with current minimum flow. 3 or more days of consecutive restriction likely to occur with higher minimum flows and more often with higher minimum flows

Return period for year with period of >=3 consec. days restriction 20 18 17 16 Return period (Years) 14 12 10 8.5 8 6 4 2.4 1.7 2 0.00 0.00 0 2000 2000 2300 2800 3300 3900 Base Case (Max **Base Case** 70% MALF Habitat 80% MALF Habitat 90% MALF Habitat MALF Allocation) 1 2 5 4 3 6

No restriction with current minimum flow. 10 or more days of consecutive restriction only likely to occur with minimum flows set at 2800 l/s or higher.

Questions?

Scenario ID	1	2	5	4	3	6	NEW
Scenario Name	Base Case	Base Case	70% MALF Habitat	80% MALF Habitat	90% MALF Habitat	MALF	wco
Minimum Flow (I/s)	2400	2400	3600	4000	4400	4700	4200
Modelled Abstraction		Existing Use	Existing Use	Existing Use	Existing Use	Existing Use	Existing Use
Full Record Statistics							
Record length (Years)	17	17	17	17	17	17	17
Total % restriction	3.4%	2.2%	4.7%	5.6%	7.1%	8.0%	6.3%
Average no. days restriction per year	5.2	3.3	7.2	8.6	10.9	12.3	9.6
Return period for year with period of >=3 consec. days restriction (Years)	3.4	3.4	1.9	1.7	1.5	1.3	1.7
Return period for year with period of >=10 consec. days restriction (Years)		17	5.7	4.3	2.4	2.1	2.8
Example Dry Year Statistics			-	-		-	-
Climate Equivalent to 2008-2009							
No. days restriction	12	1	24	28	36	38	31
No. periods of >=3 consec. days restriction	0	0	3	4	3	3	4
No. periods of >=10 consec. days restriction	0	0	0	0	3	3	1
Climate Equivalent to 2012-2013							
No. days restriction	58	52	63	67	73	78	71
No. periods of >=3 consec. days restriction	3	3	4	5	5	5	5
No. periods of >=10 consec. days restriction	2	2	2	2	2	2	2

Scenario ID	1	2	5	4	3	6
Scenario Name	Base Case	Base Case	70% MALF Habitat	80% MALF Habitat	90% MALF Habitat	MALF
Minimum Flow (I/s)	2000	2000	2300	2800	3300	3900
Modelled Abstraction	Max Allocation	Existing Use	Existing Use	Existing Use	Existing Use	Existing Use
Full Record Statistics						
Record length (Years)	17	17	17	17	17	17
Total % restriction	0%	0%	0.5%	2.3%	5.9%	12.1%
Average no. days restriction per year	0	0%	0.8	3.5	9.1	18.5
Return period for year with period of >=3 consec. days restriction (Years)	-	-	17	8.5	2.4	1.7
Return period for year with period of >=10 consec. days restriction (Years)	-	-	-	8.5	3.4	2.1
Example Dry Year Statistics		-			-	
Climate Equivalent to 2008-2009						
No. days restriction	0	0	0	6	35	67
No. periods of >=3 consec. days restriction	0	0	0	0	1	4
No. periods of >=10 consec. days restriction	0	0	0	0	1	2
Climate Equivalent to 2012-2013						
No. days restriction	2	0	20	53	77	102
No. periods of >=3 consec. days restriction	0	0	2	6	6	7
No. periods of >=10 consec. days restriction	0	0	0	1	3	3

Narrowing down the management scenarios

Mary-Anne Baker

Options

A range of scenarios for managing flows in the two rivers has been modelled.

The **base case** (or current management regime) will be modelled to understand the current water use impact on the economic, social and cultural wellbeing of the community

Proposals;

- 1) Cap SW allocation to existing use
 - a) Tutaekuri
 - b) Ngaruroro
- 2) That the TANK Group identifies two further management scenarios that combine minimum flows with restriction regimes for further modelling/assessment
 - a) Tutaekuri
 -) Ngaruroro

Restriction regimes considered – Meeting 17

	Scenario
1	Cease take at 3100 or 3200
2	Flow of Y – reduce to 50% Flow of Z – reduce to 30% Flow of 2400 – cease take
3	Total take is 20% or 30% of flow? Cease take at 2400? Or no Min flow
4	Cease take at 1600; improve shading or augment flow with cooler water See HBRC for flow levels on main stem. Further work required to identify possible wording for tributaries.
5	Staged reductions with 2 or 3 tiers Emergency takes continue at some level

Restriction regimes – revised

	Scenario	Description	Explanation
1	Staged reductions/ cease take	Impose staged reductions at specified flows <i>e.g. three stage reduction</i> <i>with cease take at specified minimum flow (25% cutback, 50% cutback, 75% cutback, cease take)</i>	 Start restrictions early but finish later. Choices for when to impose reductions is dependant on time between events – we still need to model the timing/flow trigger for the 3 stages above the minimum If time between imposing each restriction stage is too short means big compliance effort for council and operational costs for growers
2	Staged reductions/ no cease take	Staged reductions (as above) with no cease take flow and allocation continues beyond specified minimum flow at a low % of allocation	Amount able to be extracted beyond specified minimum flow a small percentage to be determined by TANK.

Restriction regimes – revised

Other options not considered for further modelling;

- **1. Cease Take at minimum flow**
 - Single cease take difficult for irrigators and
 - creates perverse incentives including over-irrigation
- 2. Flow sharing -
 - difficult to model and very difficult for compliance and operation
- 3. User groups rostering /sharing
 - Very difficult to model
 - It is similar to the staged reduction except that users would need to voluntarily and collectively meet reductions in order to meet the specified flow.

Values matrix

VALUES	ECONOM	IC	ECOSYSTEM HEALTH		SOCIAL RECREATION MAHINGA KAI	SPIRITUAL Other CULTURAL		Key: Reliability Strong alignment Medium Low	
				Attri	butes			L	
scenario	Reliability	Allocation limit	Habitat protection (%)	Days below minimum flow	% MALF				Key: habitat
1									alignment
2									Low
3									alignment
4								L	REGIONAL COUNCIL

Ngaruroro River Summary

Values	Economic		Ecosystem Health	Restriction re	gime options
scenario	Reliability	FREQUENCY OF	Habitat protection	1	2
	% DAYS ON RESTRICTION	>10 DAY CONSECUTIVE RESTRICTION	(%)	Staged reductions Cease take	Staged reduction No cease take
1					
Base					
Case/Allocated					
2					
Base case /Existing					
use					
3					
90% habitat					
Use					
4					
80% habitat					
с. с					
2 70% habitat					
Use					
6					
MALF					
Use					
7.					
wco					
4200 l/s					
use					

Tutaekuri River									
Values	Economic		Ecosystem Health		Restriction regime options				
scenario	Reliability % DAYS ON RESTRICTION	FREQUENCY OF >10 DAY CONSECUTIVE RESTRICTION	Habitat protection (%)		1 Staged reductions Cease take	2 Staged reduction No cease take			
1 Base Case/Allocated									
2 Base case /Existing use									
3 90% habitat Use									
4 80% habitat Use									
5 70% habitat Use									
6 MALF Use									

Breakout/decisions

Allocation Limits for the Ngaruroro and Tutaekuri;

Option 1 Cap allocations

Option 2 Allow use to increase to allocated amounts

Option 3 Reduce allocations

Breakout/decisions

On your work sheet – for each of your preferred flow scenarios (2-7) decide on your preferred staged reduction scenario for each river

We will then collate and report back on the various combinations.

- is any clear majority combination?
- if not, vote for the most popular.

For reduction scenario 2 – what percentage for continued take below the minimum flow?

Identify any issues arising

Next meeting – 22 November 2017

- Scenario results from SOURCE model (Rob Waldron, Jeff Smith)
- Water allocation (Malcolm Millar and EAWG subgroup)
 - "Existing use" allocation regime
 - Priority allocations
- Wetland management recommendations from WWG
- Monitoring Plan (Stephen Swabey)

Closing Karakia

Nau mai rā

Te mutu ngā o tatou hui

Kei te tumanako

I runga te rangimarie

I a tatou katoa

Kia pai to koutou haere

Mauriora kia tatou katoa

Āmine

